(You can find the PDF version of the below blogpost here. )
(Citation : R, AAKASH. "Lid Driven Cavity." Classroom fundaes. Aakash R, 2 May 2017. Web. http://instafundae.blogspot.in/2017/05/lid-driven-cavity-post-2.html.)
(Citation : R, AAKASH. "Lid Driven Cavity." Classroom fundaes. Aakash R, 2 May 2017. Web. http://instafundae.blogspot.in/2017/05/lid-driven-cavity-post-2.html.)
Abstract
The lid driven cavity is a standard benchmark problem for any CFD software/Code, Lid driven cavity flows are important in many industrial processing applications such as short-dwell and flexible blade coaters.This problem consists of a 2-D cavity , whose top side moves with a uniform velocity $u_0$.There are numerous results form the literature for the above problem , which have been used to benchmark the code,its respective results presented in this paper.The benchmarking references used in this paper are A. AbdelMigid [1] ,O. BOTELLA [3],Ghia $et$ $al.$[4]This paper presents steady state solutions to Modified Lid Driven Cavity(Same as lid driven cavity problem but with inflow and outflow at the left and right hand side boundary) introduced in the book by Hoffman [5] for low to Middle $Re$s which can be extended to produce results for the Lid Driven Cavity . It is to be duly noted that the results presented in this paper are just a small part of what the Code (The Matlab code written to solve the Modified LDC) has been tested for,the same code can be used for middle to high level $Re$s too with appropriate grid sizes.
The approach used in solving the above mentioned problem is the standard stream vorticity approach . The numerical schemes used for producing results in this include central ,forward ,backward differencing schemes,Guass seidel PSOR(Point Successive Over Relaxation) methods in solving equation,etc.
The schematic diagram of the Modified Lid Driven Cavity is as follows :
Governing Equations
The governing equations of the stream vorticity approach are Vorticity transport equation,stream function equation , continuity equations which are coupled .The below equations can be easily derived .\begin{eqnarray}
\frac{\delta \omega}{\delta t} + u \frac{\delta \omega}{\delta x} +v\frac{\delta \omega}{\delta y} &=& \gamma \left(\frac{\delta ^2 \omega}{\delta x ^2} + \frac{\delta ^2 \omega}{\delta y ^2}\right)\\
\nabla ^2\psi&=& - \omega\\
u &=& \frac{\delta \psi}{\delta y}\\
v &=& -\frac{\delta \psi}{\delta x}
\end{eqnarray}
Note the continuity equation is implicitly used in deriving the stream vorticity formulations.
Boundary Conditions
Modified Lid Driven Cavity
Boundary conditions for $u,v,\psi$Bottom side :
\begin{eqnarray}
u &=& 0\\
v &=& 0\\
\psi &=& c_1
\end{eqnarray}
Top side :
\begin{eqnarray}
u &=& 1\\
v &=& 0\\
\psi &=& c_2
\end{eqnarray}
Right side:
For $1:(j_3 -1)$
\begin{eqnarray}
u &=& 0\\
v &=& 0\\
\psi &=& c_1
\end{eqnarray}
For $j_3:j_4$
\begin{eqnarray}
\frac{\delta \psi}{\delta x} &=& 0
\end{eqnarray}
For $(j4+1):end$
\begin{eqnarray}
u &=& 0\\
v &=& 0\\
\psi &=& c_2
\end{eqnarray}
Left side :
For $1:(j_1 -1)$
\begin{eqnarray}
u &=& 0\\
v &=& 0\\
\psi &=& c_1
\end{eqnarray}
For $j_1:j_2$
\begin{eqnarray}
\frac{\delta \psi}{\delta x} &=& 0
\end{eqnarray}
For $(j2+1):end$
\begin{eqnarray}
u &=& 0\\
v &=& 0\\
\psi &=& c_2
\end{eqnarray}
Boundary conditions for $\omega$
\begin{equation}\omega = -\left( \frac{\delta ^2 \psi}{\delta x^2} + \frac{\delta ^2 \psi}{\delta y^2}\right)
\end{equation}
Discretized Equations
Vorticity Transport Equation
Inner Grid FormulationCentral Differencing Scheme
\begin{equation}
u(i,j)\frac{\omega(i+1,j)-\omega(i-1,j) }{2\Delta x}+v(i,j)\frac{\omega(i,j+1)-\omega(i,j-1) }{2\Delta y} = \gamma \left( \frac{\omega(i+1,j)-2\omega(i,j)+\omega(i-1,j)}{(\Delta x)^2} + \frac{\omega(i,j+1)-2\omega(i,j)+\omega(i,j-1)}{(\Delta y)^2}\right)
\end{equation}
Rearranging , equating $\Delta x = \Delta y$,we get:
\begin{equation}
\omega(i,j) = \frac{1}{4} \left( \omega(i+1,j)\left(1 - \frac{u(i,j)\Delta x}{2\gamma}\right) + \omega(i-1,j)\left(1 + \frac{u(i,j)\Delta x }{2\gamma}\right) \\ + \omega(i,j+1)\left(1 - \frac{v(i,j)\Delta x }{2\gamma}\right) + \omega(i,j-1)\left(1 + \frac{v(i,j)\Delta x}{2\gamma}\right)\right)
\end{equation}
Finally applying the PSOR
\begin{equation}
\omega(i,j) =(1-\alpha)\omega(i,j) + \frac{\alpha}{4} \left( \omega(i+1,j)\left(1 - \frac{u(i,j)\Delta x}{2\gamma}\right) + \omega(i-1,j)\left(1 + \frac{u(i,j)\Delta x }{2\gamma}\right) \\ + \omega(i,j+1)\left(1 - \frac{v(i,j)\Delta x }{2\gamma}\right) + \omega(i,j-1)\left(1 + \frac{v(i,j)\Delta x}{2\gamma}\right)\right)
\end{equation}
Boundary Formulation
Left Boundary
\begin{eqnarray}
\omega(1,j )&=& - \left. \frac{\delta ^2 \psi}{\delta x^2} \right \vert _{(1,j)} - \left.\frac{\delta u}{\delta y}\right \vert _{(1,j)}\\
\implies \omega(1,j) &=& 2\frac{\psi(1,j)-\psi(2,j)}{\Delta x^2} - 2\frac{v(1,j)}{\Delta x} -\frac{u(1,j+1)-u(1,j-1)}{(2\Delta y)}
\end{eqnarray}
Right Boundary
\begin{eqnarray}
\omega(im,j )&=& - \left. \frac{\delta ^2 \psi}{\delta x^2} \right \vert _{(1,j)} - \left.\frac{\delta u}{\delta y}\right \vert _{(1,j)}\\
\implies \omega(1,j) &=& 2\frac{\psi(1,j)-\psi(2,j)}{\Delta x^2} - 2\frac{v(1,j)}{\Delta x} -\frac{u(1,j+1)-u(1,j-1)}{(2\Delta y)}
\end{eqnarray}
Stream Vorticity Equation
Inner Grid FormulationCentral Differencing Scheme
\begin{eqnarray}
\omega = - \left( \frac{\psi(i+1,j)-2\omega(i,j)+\psi(i-1,j)}{(\Delta x)^2} + \frac{\psi(i,j+1)-2\psi(i,j)+\psi(i,j-1)}{(\Delta y)^2}\right)\\
\implies \psi(i,j) = \frac{1}{4}\left(\psi(i,j-1)+\psi(i,j+1)+\psi(i-1,j)+\psi(i+1,j)+ \omega (i,j)\Delta x ^2 \right)
\end{eqnarray}
Finally applying PSOR we get
\begin{equation}
\psi(i,j) = (1-\alpha)\psi(i,j)+\frac{\alpha}{4}(\psi(i,j-1)+\psi(i,j+1)+\psi(i-1,j)+\psi(i+1,j)+ \omega (i,j)\Delta x ^2 )
\end{equation}
Boundary Formulation
Left Boundary ($j_1 : j_2$):\begin{eqnarray}
\left. \frac{\delta \psi}{\delta x} \right \vert _{(1,j)} = v
\end{eqnarray}
Using 2nd order accurate scheme we get
\begin{eqnarray}
\psi(1,j) = \frac{4\psi(2,j)-\psi(3,j) + 2\Delta x v(1,j)}{3}
\end{eqnarray}
Right Boundary ($j_3 : j_4$):
Using 2nd order accurate scheme we get
\begin{eqnarray}
\psi(im,j) = \frac{4\psi(im-1,j)-\psi(im-2,j) - 2\Delta x v(1,j)}{3}
\end{eqnarray}
Velocity Equations
Inner Grid Formulation
Central Differencing Scheme
\begin{eqnarray}
u = \frac{\psi(i,j+1)-\psi(i,j-1)}{(2\Delta y)}\\
v = \frac{\psi(i+1,j)-\psi(i-1,j)}{(2\Delta x)}
\end{eqnarray}
Boundary Formulation
Forward Differencing Scheme\begin{eqnarray}
u &=& \frac{(\psi(j+1,i) - \psi(j,i))}{\Delta y}\\
v &=& 0
\end{eqnarray}
Parameters used for convergence measure
Before we see the algorithm used in solving the problem ,I would introduce few parameters used in checking the convergence of the solution.
The parameters are as follows :
- $e_1$: RMSE $\left ( \frac{\psi ^{k+1} _{i,j} -\psi ^k _{i,j}}{\psi ^k _{i,j}} \right )$ (where k is the iteration number)
Variable name used in the program ("err"). - $e_2$ :RMSE$\left ( \frac{\omega ^{k+1} _{i,j} -\omega ^k _{i,j}}{\omega ^k _{i,j}}\right )$ .
Variable name used in the program ("err1") - $e_3$ : Numerical solution accuracy of Vorticity equation .
Variable name used in the program ("ERR1") - $e_4$ : Numerical solution accuracy of Navier stokes equation .
Variable name used in the program ("ERR2")
It is to be noted that $e_1<e_2<e_3<e_4$ for the algorithm used in this paper , hence convergence is measured using $e_4$ , divergence measured using $e_1$.
Algorithm
- Assuming a specific grid size $N_x,N_y $ .
- Construct matrices for $\psi,\omega,u,v$ using the above mentioned size using random values .
- Assume appropriate boundary conditions for $\psi,\omega,u,v$ .
- Solve for $\psi$ using the PSOR method using Stream Vorticity function .
- Compute $u,v$ using central difference scheme .
- Iterate the PSOR method for $\omega$ using vorticity transport Equation once (using the pre solved $\psi,u,v $ .
(Note : Don't solve for $\omega$ run the PSOR over the entire grid once.) - Compute necessary Error Functions, check for convergence.
- If converged , STOP. Else go to Step 4.
Results
Presented below are few results which can be used for used for benchmarking purposes .
129x129 Grid
S.No | U Velocity (m/s) | V velocity (m/s) | ||||||||
Distance (m) | Re 100 | Re 400 | Re 800 | Re 1000 | Re 3200 | Re 100 | Re 400 | Re 800 | Re 1000 | Re 3200 |
1.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.9760 | 0.8431 | 0.7568 | 0.6799 | 0.6537 | 0.5189 | -0.0465 | -0.0885 | -0.1349 | -0.1655 | -0.3331 |
0.9687 | 0.7911 | 0.6825 | 0.5955 | 0.569 | 0.4747 | -0.0621 | -0.1224 | -0.1885 | -0.2311 | -0.4441 |
0.9609 | 0.7402 | 0.6155 | 0.5283 | 0.5068 | 0.4609 | -0.0777 | -0.1577 | -0.2434 | -0.2967 | -0.5218 |
0.9531 | 0.6906 | 0.5567 | 0.4775 | 0.4632 | 0.4583 | -0.0930 | -0.1936 | -0.2974 | -0.3586 | -0.5537 |
0.8515 | 0.2357 | 0.2883 | 0.3211 | 0.3350 | 0.3465 | -0.2388 | -0.4452 | -0.4241 | -0.4061 | -0.3679 |
0.7344 | 0.0037 | 0.1603 | 0.1806 | 0.1892 | 0.2000 | -0.2134 | -0.2522 | -0.2295 | -0.2356 | -0.2300 |
0.6172 | -0.1388 | 0.0198 | 0.0483 | 0.0551 | 0.0775 | -0.0738 | -0.0900 | -0.0981 | -0.0999 | -0.1057 |
0.5000 | -0.2087 | -0.1159 | -0.0705 | -0.0620 | -0.0367 | 0.0574 | 0.0526 | 0.0295 | 0.0258 | 0.0143 |
0.4531 | -0.2134 | -0.1722 | -0.1161 | -0.1089 | -0.0800 | 0.0970 | 0.1110 | 0.0798 | 0.0771 | 0.0605 |
0.2813 | -0.1570 | -0.3244 | -0.2982 | -0.2808 | -0.2405 | 0.1752 | 0.2855 | 0.2758 | 0.2690 | 0.2361 |
0.1719 | -0.1013 | -0.2376 | -0.3564 | -0.3852 | -0.3434 | 0.1696 | 0.2862 | 0.3515 | 0.3715 | 0.3556 |
0.1016 | -0.0641 | -0.1418 | -0.2456 | -0.2923 | -0.4297 | 0.1323 | 0.2357 | 0.3070 | 0.3370 | 0.4291 |
0.0703 | -0.0464 | -0.1001 | -0.1783 | -0.2236 | -0.4036 | 0.1031 | 0.1947 | 0.2625 | 0.2958 | 0.4071 |
0.0625 | -0.0418 | -0.0897 | -0.1610 | -0.2029 | -0.3798 | 0.0944 | 0.1812 | 0.2475 | 0.2804 | 0.3914 |
0.0547 | -0.0371 | -0.0792 | -0.1435 | -0.1817 | -0.3499 | 0.0850 | 0.1661 | 0.2302 | 0.2625 | 0.3719 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Comparison of my code with Ghia et al (129x129 Grid)
Grid Points | U-Velocity | Grid Points | V-Velocity | |||
Present | Ghia et al | Present | Ghia et al | |||
Re 100 | Re 100 | |||||
129 | 1 | 1 | 129 | 0 | 0 | |
126 | 0.84311 | 0.84123 | 125 | -0.0621 | -0.05906 | |
125 | 0.79114 | 0.78871 | 124 | -0.07766 | -0.07391 | |
124 | 0.74015 | 0.73722 | 123 | -0.09305 | -0.08864 | |
123 | 0.69055 | 0.68717 | 122 | -0.10817 | -0.10313 | |
110 | 0.23571 | 0.23151 | 117 | -0.17657 | -0.16914 | |
95 | 0.00375 | 0.00332 | 111 | -0.23289 | -0.22445 | |
80 | -0.1388 | -0.13641 | 104 | -0.2526 |
| |
65 | -0.2087 | -0.20581 | 65 | 0.057388 | 0.05454 | |
59 | -0.2134 | -0.2109 | 31 | 0.178879 | 0.17527 | |
37 | -0.157 | -0.15662 | 30 | 0.178671 | 0.17507 | |
23 | -0.1013 | -0.1015 | 21 | 0.164132 | 0.16077 | |
14 | -0.0641 | -0.06434 | 13 | 0.125833 | 0.12317 | |
10 | -0.0464 | -0.04775 | 11 | 0.11128 | 0.1089 | |
9 | -0.0418 | -0.04192 | 10 | 0.103134 | 0.10091 | |
8 | -0.0371 | -0.03717 | 9 | 0.094379 | 0.09233 | |
1 | 0 | 0 | 1 | 0 | 0 |
S.No | U Velocity (m/s) | V velocity (m/s) | ||||||
Distance (m) | Re 100 | Re 400 | Re 1000 | Re 3200 | Re 100 | Re 400 | Re 1000 | Re 3200 |
1.00 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
0.9760 | 0.8431 | 0.7568 | 0.6537 | 0.5189 | -0.0465 | -0.0885 | -0.1655 | -0.3331 |
0.9687 | 0.7911 | 0.6825 | 0.569 | 0.4747 | -0.0621 | -0.1224 | -0.2311 | -0.4441 |
0.9609 | 0.7402 | 0.6155 | 0.5068 | 0.4609 | -0.0777 | -0.1577 | -0.2967 | -0.5218 |
0.9531 | 0.6906 | 0.5567 | 0.4632 | 0.4583 | -0.0930 | -0.1936 | -0.3586 | -0.5537 |
0.8515 | 0.2357 | 0.2883 | 0.3350 | 0.3465 | -0.2388 | -0.4452 | -0.4061 | -0.3679 |
0.7344 | 0.0037 | 0.1603 | 0.1892 | 0.2000 | -0.2134 | -0.2522 | -0.2356 | -0.2300 |
0.6172 | -0.1388 | 0.0198 | 0.0551 | 0.0775 | -0.0738 | -0.0900 | -0.0999 | -0.1057 |
0.5000 | -0.2087 | -0.1159 | -0.0620 | -0.0367 | 0.0574 | 0.0526 | 0.0258 | 0.0143 |
0.4531 | -0.2134 | -0.1722 | -0.1089 | -0.0800 | 0.0970 | 0.1110 | 0.0771 | 0.0605 |
0.2813 | -0.1570 | -0.3244 | -0.2808 | -0.2405 | 0.1752 | 0.2855 | 0.2690 | 0.2361 |
0.1719 | -0.1013 | -0.2376 | -0.3852 | -0.3434 | 0.1696 | 0.2862 | 0.3715 | 0.3556 |
0.1016 | -0.0641 | -0.1418 | -0.2923 | -0.4297 | 0.1323 | 0.2357 | 0.3370 | 0.4291 |
0.0703 | -0.0464 | -0.1001 | -0.2236 | -0.4036 | 0.1031 | 0.1947 | 0.2958 | 0.4071 |
0.0625 | -0.0418 | -0.0897 | -0.2029 | -0.3798 | 0.0944 | 0.1812 | 0.2804 | 0.3914 |
0.0547 | -0.0371 | -0.0792 | -0.1817 | -0.3499 | 0.0850 | 0.1661 | 0.2625 | 0.3719 |
0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Comparison with Ghia etal ,and O .BOTELLA:
Grid Points | U-Velocity | Grid Points | V-Velocity | ||||||||
Present | Ghia et al | Present | Ghia et al | O.BOTELLA | Present | Ghia et al | Present | Ghia et al | O.BOTELLA | ||
Re 400 | Re 1000 | Re 400 | Re 1000 | ||||||||
251 | 1 | 1 | 1 | 1 | 1 | 251 | 0 | 0 | 0 | 0 | 0 |
245 | 0.75389422 | 0.75837 | 0.653659036 | 0.65928 | 0.6644227 | 243 | -0.127997501 | -0.12146 | -0.2311 | -0.21388 | -0.22792 |
243 | 0.67893746 | 0.68439 | 0.569419488 | 0.57492 | 0.5808359 | 241 | -0.16480199 | -0.15663 | -0.2967 | -0.27669 | -0.29369 |
241 | 0.61153269 | 0.61756 | 0.506788795 | 0.51117 | 0.5169277 | 239 | -0.202194664 | -0.19254 | -0.3586 | -0.33714 | -0.35532 |
239 | 0.5527114 | 0.55892 | 0.463245781 | 0.46604 | 0.4723329 | 237 | -0.239373072 | -0.22847 | -0.4134 | -0.39188 | -0.41038 |
214 | 0.29147429 | 0.29093 | 0.334964485 | 0.33304 | 0.3372212 | 228 | -0.382661909 | -0.23827 | -0.5226 | -0.5155 | -0.52644 |
185 | 0.16391904 | 0.16256 | 0.189150105 | 0.18719 | 0.1886747 | 216 | -0.452317228 | -0.44993 | -0.426 | -0.42665 | -0.42645 |
155 | 0.01930732 | 0.02135 | 0.055104972 | 0.05702 | 0.0570178 | 202 | -0.383530806 | -0.38598 | -0.3172 | -0.31966 | -0.32021 |
126 | -0.1152734 | -0.11477 | -0.061988317 | -0.0608 | -0.062056 | 126 | 0.052196894 | 0.05188 | 0.02584 | 0.02526 | 0.0258 |
114 | -0.1730285 | -0.17119 | -0.108910482 | -0.10648 | -0.1082 | 60 | 0.302110802 | 0.30174 | 0.32157 | 0.32235 | 0.32536 |
71 | -0.3276167 | -0.32726 | -0.280799838 | -0.27805 | -0.28037 | 58 | 0.30257526 | 0.30203 | 0.33037 | 0.33075 | 0.33399 |
44 | -0.2423208 | -0.24299 | -0.385150406 | -0.38289 | -0.388569 | 40 | 0.282024218 | 0.28124 | 0.37335 | 0.37095 | 0.37692 |
26 | -0.1428726 | -0.14612 | -0.292346467 | -0.2973 | -0.300456 | 24 | 0.228366656 | 0.22965 | 0.32684 | 0.32627 | 0.33304 |
19 | -0.1047669 | -0.10338 | -0.223618183 | -0.2222 | -0.222896 | 21 | 0.212590596 | 0.2092 | 0.30931 | 0.30353 | 0.30991 |
17 | -0.0938794 | -0.09266 | -0.202882065 | -0.20196 | -0.20233 | 19 | 0.200473862 | 0.19713 | 0.29582 | 0.29012 | 0.29627 |
15 | -0.0829239 | -0.08186 | -0.181688508 | -0.18109 | -0.181288 | 17 | 0.1868535 | 0.1836 | 0.28043 | 0.27485 | 0.28071 |
1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
501x501 Grid:
Note : The Underlined values show some discrepancies with the results of Ghia etal.
Grid Points | U-Velocity | Grid Points | V-Velocity | ||||
Present | Ghia et al | AbdelMigid | Present | Ghia et al | AbdelMigid | ||
Re 3200 | Re 3200 | Re 3200 | Re 3200 | Re 3200 | Re 3200 | ||
501 | 1 | 1 | 1 | 501 | 0 | 0 | 0 |
489 | 0.518868 | 0.53236 | 0.536 | 485 | -0.44412 | -0.39017 | −0.4106 |
485 | 0.474687 | 0.48296 | 0.4886 | 481 | -0.52184 | -0.47425 | −0.5049 |
481 | 0.460908 | 0.46547 | 0.4661 | 478 | -0.55368 | -0.52357 | −0.5560 |
478 | 0.458339 | 0.46101 | 0.461 | 474 | -0.56399 | -0.54053 | −0.5671 |
427 | 0.346469 | 0.34682 | 0.3491 | 454 | -0.44061 | -0.44307 | −0.4462 |
368 | 0.200026 | 0.19791 | 0.2035 | 431 | -0.37699 | -0.37401 | −0.3799 |
310 | 0.077457 | 0.07156 | 0.078 | 403 | -0.31086 | -0.31184 | −0.3148 |
251 | -0.03674 | -0.04272 | −0.0369 | 251 | 0.014275 | 0.00999 | 0.0142 |
228 | -0.07997 | -0.86636 | −0.0808 | 118 | 0.286802 | 0.28188 | 0.2864 |
142 | -0.24047 | -0.24427 | −0.2414 | 114 | 0.295331 | 0.2903 | 0.2954 |
87 | -0.34339 | -0.34323 | −0.3445 | 79 | 0.37531 | 0.37119 | 0.3753 |
52 | -0.42972 | -0.41933 | −0.4314 | 48 | 0.4294 | 0.42768 | 0.4318 |
36 | -0.40356 | -0.37827 | −0.4081 | 40 | 0.418656 | 0.41906 | 0.4224 |
32 | -0.37977 | -0.35344 | −0.3839 | 36 | 0.407058 | 0.40917 | 0.4109 |
28 | -0.34989 | -0.32407 | −0.3530 | 32 | 0.391374 | 0.3956 | 0.3949 |
1 | 0 | 0 | 0 | 1 | 0 | 0 | 0 |
Matlab Code URL
Link : https://github.com/RAAKASH/Intro-to-CFD-/tree/master/LDCCheck LDC - Post 3 for description of the Matlab code .
References
[1] Tamer A. AbdelMigid, Khalid M. Saqr, Mohamed A. Kotb, and Ahmed A. Aboelfarag. Revisiting the lid-driven cavity flow problem: Review and new steady state benchmarking results using {GPU} accelerated code. Alexandria Engineering Journal, 56(1):123 – 135, 2017.
[2] C. K. Aidun, N. G. Triantafillopoulos, and J. D. Benson. Global stability of a liddriven cavity with throughflow: Flow visualization studies. Physics of Fluids A: Fluid Dynamics, 3(9):2081–2091, 1991.
[3] O Botella and R Peyret. Benchmark spectral results on the lid-driven cavity flow. Computers & Fluids, 27(4):421–433, 1998.
[4] UKNG Ghia, Kirti N Ghia, and CT Shin. High-re solutions for incompressible flow using the navier-stokes equations and a multigrid method. Journal of computational physics, 48(3):387–411, 1982.
[5] K.A. Hoffman. Computational Fluid Dynamics for Engineers. Number v. 2. Engineering Education System, 1989.
No comments:
Post a Comment